1. 乘法
乘法是算术中最简单的运算。 最早来自于整数的乘法运算。整数的乘法运算满足:交换律,结合律, 分配律,消去律。 随着数学的发展, 运算的对象从整数发展为更一般群。 群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
假如a乘以b等于c,即记为a × b = c或a‧b = c,亦可写成a b = c。「×」称为乘号。
中国古代利用算筹进行乘法计算。筹算乘法分三层:上位是被乘数,中位是积,下位是乘数。先由乘数的最大一位去乘被乘数,乘完后去掉这位的算筹,再用第二位数去乘,两次之积对应位上的数相加,乘完为止。
2.分数
分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
把单位"1"平均分成若干份,表示这样的一份或几份的数叫做分数。
分母表示把一个物体平均分成几份,分子表示取了其中的几份。
3.分子 (molecules)
一个分数中,写在横线上面的数。
4.最简分数
最简分数是指分子和分母互质的分数,又称既约分数。举个例子:9/12是一个真分数,但它不是最简分数,因为分子和分母都有公约数3,也就是说能同时除以3,约分得3/4,分子3和分母4除了1以外再没有其他公约数,那么3/4就是一个最简分数(既约分数)。
5.约分
意义:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。
注意:约分时尽量用口算,一般用分子和分母的公约数(1除外)去除分数的分子和分母;通常要除到得出最简分数为止。
约分时,如果能很快看出分子和分母的最大公约数,直接用它们的最大公约数去除比较简便.
6.路程
质点从空间的一个位置运动到另一个位置,运动轨迹的长度叫做质点在这一运动过程所通过的路程。路程是标量,即没有方向的量。位移与路程是两个不同的物理量。在直线运动中,路程是直线轨迹的长度;在曲线运动中,路程是曲线轨迹的长度。当物体在运动过程中经过一段时间后回到原处,路程不为零,位移则等于零。
7.公顷[hectare]
百公亩。公制地积单位,一公顷等于一万平方米,合十五市亩
1公顷=15市亩=2.471英亩