按比例分配 第1课时

【教学内容】

教科书第65页例1及相关练习。

【教学目标】

1.在具体情境中理解比的意义,知道比的各部分名称,掌握比的读、写方法,会求比值。

2.培养学生的合作意识,让学生在小组活动中初步理解比与分数,比与除法之间的关系。

【教学重点】

理解比的意义及比、分数、除法的联系。

【教学过程】

一、导入新课

1.出示例1图表:

姓名从家到学校的路程(m)从家到学校的时间(分)

张丽2405

李兰2004

教师引导学生观察表格后提问:你从表格中了解到什么信息?每两个数量之间有怎样的关系?你都会用哪些方法表示它们之间的关系?

学生可能找到每两个数量之间各种各样的关系,针对学生所答,及时作出引导评价。

2.小结:我们会用加法表示两个量之间的合并关系。会用减法表示两个量之间的相差关系,也会用分数或除法表示两个量之间的倍数关系。今天,我们再来学习一种新的表示两个量间数量关系的方法。

二、学习新知

1.初步认识比及比的读、写方法。

(1)找出板书中学生用分数或除法表示两个量之间倍数关系的实例,用彩色粉笔标注出来,指出:像这样两个数相除又叫做两个数的比。

教师举例:比如张丽用的时间是李兰的几倍?5÷4=54,我们就说,张丽和李兰所用时间的比是“5比4”,可以写成5:4或54,读作:5比4。

(2)学生带着问题自读教科书例1内容。

问题:①比的各部分名称是什么?

②你都知道了关于比的哪些知识?

③5比4是哪个数量与哪个数量的比?那4比5呢?

学生自学后根据问题谈自己的收获。

(3)教学例1“试一试”。

①提问:你能用刚才所学的知识解决“试一试”中的问题吗?组织学生独立思考,解决问题,然后集体订正,评价。

教师追问:为什么张丽与李兰所用时间的比中5是比的前项,而在李兰与张丽所用时间的比中5又是比的后项呢?学生回答后,教师指出:两个数的比是有顺序的。因此,在用比表示两个数量的关系时,一定要按照叙述的顺序,正确表达是一个数量与另一个数量的比,不能颠倒两个数的位置。

②教师提问:5分钟、4分钟都表示什么?(时间)

教师小结:5分钟、4分钟都表示时间,它们是同一种量,我们就说这两个数量的比是同类量的比。

观察“试一试”中的最后一个问题。

教师提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁?

教师:我们也可以用比来表示路程和时间的关系。路程除以时间可以说成什么?(可以说成路程和时间的比)路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的量:速度)

师生共同小结:两个数量的比可以是同类量的比,也可以是不同类量的比。

2.求比值。

思考:5∶4表示什么?4∶5表示什么?

说明:比的前项除以比的后项得到的商就是比值。你知道怎么求比值吗?

课堂内完成课堂活动第1题。

3.比与除法、分数之间的关系。

分组讨论,议一议:比、分数和除法之间有什么关系?

学生讨论后汇报,根据汇报情况师生共同完成下表。

相应部分区别

比前项∶(比号)后项比值一种关系

除法被除数÷(除号)除数商一种运算

分数分子-(分数线)分母分数值一种数

三、巩固练习

1.想一想,填一填。

(1)比的前项是5,后项是3,比值是()。

(2)比的后项是8,前项是4,比值是()。

(3)比的前项是0,比值也是0,后项是()。

(4)甜甜3分钟做60道口算题,做口算题的个数与时间的比是()

学生独立思考、解答,然后指名回答,集体订正。(提醒学生:比的后项不能是0)

2.拓展练习。(课件出示)

(1)“甲队在一场球赛中以12∶0的比分大胜乙队”请问“12∶0”是比吗?(不是比,它是记录两队得分的多少的一种形式)

(2)我国陆地和世界陆地的比是1∶15。我国人口和世界人口的比是1∶5。

据世界卫生组织统计,全球每年有500万人因吸烟而死亡,其中中国因吸烟而死亡的人数与全球因吸烟而死亡的人数的比是1∶5。

你从所提供的信息中找到了哪些关于比的信息?看到这些信息,你有何想法?

(3)图示呈现:两杯糖水,第一杯中糖与水的比是2∶50;第二杯中糖与水的比是3∶50。哪一杯糖水更甜?

学生思考、讨论回答后,教师小结。

四、全课总结

教师:同学们,这一节课你学得愉快吗?你有什么收获?(指名说一说)

教师总结。(略)

五、课外作业

收集生活中关于比的信息。

[评析:本节课的设计注重对学生原有知识的了解,让学生在已有认知经验的基础上,给学生提供自主探究的时间和空间,同时教师结合具体问题,把握时机,培养学生收集信息的能力,合理的把数学与生活紧密联系起来。]