梯形面积的计算

   福田区水围小学   冯卫忠

教学内容人教版第九册第74-75页“做一做”。练习十八第1、2、3题。

教学目的:1、理解并掌握梯形面积公式的推导过程,正确进行梯形面积的计算。

          2、培养学生分析、综合、抽象、概括的能力,发展学生的空间观念。

教学重点:使学生理解和掌握梯形的面积公式,能正确应用面积公式计算梯形的面积。

教学难点:使学生理解梯形面积公式的来源,理解为什么要除以2。

教学用具:多媒体课件一套、投影仪。学生分小组分别准备4个形状大小完全相同的梯形。

教学过程

  1. 复习:请同学们回忆平行四边形、三角形面积公式的推导过程,教师根据学生回答运用多媒体演示相应的公式推导过程,显示相应的面积计算公式。
  2. 激发兴趣,揭题:

平行四边形、三角形的面积我们已会计算了,那么这个图形(多媒体出示梯形)

的面积你会计算吗?这节课我们就来学习梯形面积的计算。

板书:梯形面积的计算

  1. 新授,探索与讨论:
    1. 刚才我们复习了平行四边形、三角形面积计算的推导方法,请同学们想一想:你能不能把梯形也转化成我们所学过的图形,技术它的面积呢?

学生拿出准备好的梯形分小组讨论,拼一拼,摆一摆,看能想出几种方法。

学生操作,把拼好的小组代表请到展示台演示过程并简略说理由:

方法一:学生用两个大小一样的梯形拼成一个平行四边形,

 


 梯形面积=平行四边形面积÷2

方法二:把梯形沿对角线剪成两个三角形,

梯形面积=三角形1面积+三角形2面积

法三:沿梯形上底的一角顶点到下底任一点作对边的平行线,把梯形分成一个平行四边形与三角形。

 


方法四:``````

    1. 引导学生探索梯形的面积计算方法:

 同学们都很聪明能想到那么多种方法求梯形面积。那么我们能不能总结出梯形面积的计算公式呢?

请同学观察方法一,分小组思考讨论:

  1. 两个大小一样的梯形要怎样才能拼成一个平行四边形?
  2. 新拼的平行四边形的底与梯形的上下底有什么关系?
  3. 平行四边形的高与梯形的高怎样?
  4. 新拼成的平行四边形面积与这个梯形的面积有什么关系?

5) 怎样求出梯形面积?

师根据学生回答归纳出:梯形的面积=(上底+下底)×高÷2 (板书)

师问:为什么要除以2?

梯形的面积计算公式还可以用字母表示。请生看课本75页,理解并记住梯形面积的计算公式。

请同学们看方法二:

   你能根据这种方法也算出刚才梯形的面积吗?

   学生分小组计算出计算式:3×4÷2+5×4÷2

   师再引导学生根据和除以一个数规律和乘法分配律想出3×4÷2+5×4÷2=(3+5)×4÷2(也就是上下底之和乘以高除以2)

师:方法二也是一种很好的方法。方法三呢?课后留给同学们自己看能否也概括出方法一、方法二中的梯形面积公式。

    1. 教学75页例1(出示题目)

学生理解“横截面”:(教师利用 电脑演示水渠的横截面形状)、学生试做,集体订正、

四、 学生质疑本课相关问题,调动学生互问互答积极性,教师引导。

五、技能应用:

1. 电脑出示各种位置的梯形,学生口答各梯形的上下底和高,让学生说说怎样确定梯形的上下底和高。

2. 做课本75页“做一做”,独立完成,集体订正。

3. 电脑出示课本76页圆木或钢管堆放图,学生思考:怎样算出总根数?

分小组议一议,并说明理由。

六、 课后作业:课本76页1、2、3题

板书设计

                           梯形面积的计算

例1:一条新挖的渠道,横截面是梯形(如图),渠口宽2。8米,渠底宽1。4米,渠深1。2米

。它的横截面积是多少平方米?          

(2.8+1。4)×1。2÷2

=4。2 ×1。2÷2

=2。52(平方米)

答:它的横截面积是2。52平方米。

平行四边形的面积=  底   ×   高

2个梯形面积 =(上底+下第)× 高 

梯形面积    = (上底+下第)×高 ÷2

      s  = (a+b) · h ÷2